
J. Fluid Mech. (2009), vol. 618, pp. 263–277. c© 2008 Cambridge University Press

doi:10.1017/S0022112008004229 Printed in the United Kingdom

263

Four-wave resonant interactions in the classical
quadratic Boussinesq equations

M. ONORATO1†, A. R. OSBORNE1, P. A. E. M. JANSSEN2

AND D. RESIO3
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We investigate theoretically the irreversibile energy transfer in flat bottom shallow
water waves. Starting from the oldest weakly nonlinear dispersive wave model in
shallow water, i.e. the original quadratic Boussinesq equations, and by developing a
statistical theory (kinetic equation) of the aforementioned equations, we show that
the four-wave resonant interactions are naturally part of the shallow water wave
dynamics. These interactions are responsible for a constant flux of energy in the wave
spectrum, i.e. an energy cascade towards high wavenumbers, leading to a power law
in the wave spectrum of the form of k−3/4. The nonlinear time scale of the interaction
is found to be of the order of (h/a)4 wave periods, with a the wave amplitude and h

the water depth. We also compare the kinetic equation arising from the Boussinesq
equations with the arbitrary-depth Hasselmann equation and show that, in the limit
of shallow water, the two equations coincide. It is found that in the narrow band
case, both in one-dimensional propagation and in the weakly two-dimensional case,
there is no irreversible energy transfer because the coupling coefficient in the kinetic
equation turns out to be identically zero on the resonant manifold.

1. Introduction
A part of the wave forecasting community shares the common thinking that,

while the four-wave (resonant) interactions are relevant in deep water, the three-wave
interactions become the main nonlinear mechanism of energy transfer as the waves
travel into shallow areas. Therefore, it appears that, when waves travel in shallow
water, the four-wave kinetic equation (the Hasselmann equation based on the four-
wave resonant interactions) is not the appropriate tool for investigation and usually
different approaches are preferred (see Cavaleri et al. 2007, for a recent review, and
references therein): (i) the computation of the quasi-resonant triads (see, for example
Eldeberky 1996), (ii) the deterministic modelling (Boussinesq equations or higher
order, see Madsen and Schaffer 1998) and (iii) the evolution equations for spectra
and bispectra (see, for example Herbers and Burton 1997). Each of these methods
furnishes reasonable results when compared to experimental data in shallow water
but none of them can be used as a tool for making statistical predictions in infinite
water depth. As a matter of fact, it appears from most of the existing literature that,
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as waves propagate from deep to shallow water, different models have to be used for
an appropriate forecasting.

In this paper, our aim is to show that the nonlinear transfer in shallow water
(constant depth) is not so different from the deep water one: in both cases it is
ruled by a four-wave kinetic equation. We will show that a theory based on four-
wave resonant interaction in shallow water can be useful for understanding some
issues related to the energy transfer. In order to do that we concentrate our analysis
on the simplest (and probably the oldest) deterministic shallow water model, i.e.
the Boussinesq equations in flat bottom conditions; we will show analytically the
following results:

(i) Exact four-wave resonant interactions are included in the flat bottom quadratic
Boussinesq equations;

(ii) The typical nonlinear time scale, τ4NL, of the four-wave kinetic equation in
shallow water is of the order of 1/(a/h)4 wave periods;

(iii) The four-wave kinetic equation derived from the Boussinesq equations is
nothing but the limit of the arbitrary depth Hasselmann equation as kh → 0; in other
words, the Hasselmann equation is ‘compatible’ with the Boussinesq equations in flat
bottom conditions.

The derivation of the above results also offers us the possibility to discuss some
more technical issues related to the ‘integrability’ of wave systems in shallow water.
We show that, if the narrow-band approximation is taken, the Zakharov equation in
shallow water reduces to the shallow water Davey–Stewartson equations. This system
of equations is known to be integrable and, as a consequence, it does not admit a net
flux of energy or wave action across the wave spectrum. The results are reported in
§ 4.

We also concentrate our analysis on the equilibrium range in wave spectra: in deep
water it is well accepted that the inertial range in the wave spectrum is characterized
by a power law of the form ω−4. As the water becomes shallower, it is plausible
that such a law could change (this is because the coupling coefficient in the multiple
integral in the nonlinear source term is a function also of the water depth). It has
already been shown by Zakharov (1999) that, in the limit of shallow water, the power
law in the wave spectrum should be of the form ω−4/3. This result, which has been
observed experimentally by Smith and Vincent (2003) and by Kaihatu et al. (2007),
is perfectly consistent with a dimensional analysis of our shallow water four-wave
kinetic equation derived from the deterministic Boussinesq equations. Discussion and
conclusions are reported in § 7.

We mention that the present manuscript has been inspired by the following
references: Zakharov (1998, 1999) and Janssen and Onorato (2007), where the first
ideas on the comprehension of the four-wave resonant interactions in shallow water
have been reported. In the past, there have been other attempts to address such
problems (Herterich and Hasselmann 1980; Lin and Perrie 1997); nevertheless these
approaches have failed either because the role of the mean flow has not been properly
considered or the shallow water limit has not been taken properly. As will be shown in
this paper, taking the shallow water limit is not an easy task; some small denominators
appear and, if not properly treated, can lead to wrong results (Janssen and Onorato
2007; Gorman 2003).

In order to avoid any confusion and clarify the role of the present paper with
respect to the existing literature, we underline that our goal here is not to develop a
new model or to validate the old Boussinesq equations (or the corresponding kinetic
equation); we do not even intend to develop a model which is valid from deep to
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shallow water as in Janssen, Herbers & Battjes (2006) or Madsen, Bingham & Liu
(2002). Our main aim is to show that even the lowest order quadratic Boussinesq
equations include naturally the four-wave resonant interactions mechanism as a
nonlinear energy transfer process; if desired, the same procedure can be applied
to any higher order Boussinesq model (Madsen and Schaffer 1998), increasing the
accuracy of the four-wave interactions as waves propagate towards deeper water.

2. The Boussinesq equations and four-wave interactions
The Boussinesq equations have been a major tool for studying the dynamics of

shallow water waves. They have been derived from the Euler equations in the limit
of shallow water and small amplitude waves. In particular two small parameters are
usually introduced: the first one is β = (kh)2 where k corresponds to wavenumbers
and h is the fluid depth; the second one is α = a/h where a is a typical wave
amplitude. The starting point of our analysis is the classical quadratic Boussinesq
equations as given in text books (see Whitham 1974; Mei 2000):

ηt + ∇ · [(η + h)u] = 0, (2.1)

ut + u · ∇u + g∇η − h2

3
∇∇ · ut = 0. (2.2)

Here u = u(x, y, t) is the depth integrated horizontal velocity; η = η(x, y, t) is the
surface elevation and g is gravity. For the derivation of (2.1) and (2.2) one needs to
make the hypothesis that β ∼ α � 1 and to neglect in the expansion terms of the order
of αβ , β2. Note that, under the hypothesis that waves propagate in only one direction,
the celebrated Korteweg and De Vries equation can be derived (Whitham 1974).

Equation (2.2) can be written for the velocity potential using u = ∇φ and the
resulting equation reads:

φt + 1
2
(∇φ)2 + gη − h2

3
∇2φt = 0. (2.3)

Equations (2.1) and (2.3) are our starting point for the analysis.

2.1. The Boussinesq equations in Fourier space

We now introduce the Fourier transform of η as

η =

∫
η̂ke

ik·xdk, (2.4)

where k = (kx, ky), x = (x, y) and η̂k = η̂(k, t). A similar definition holds for the
velocity potential. A straightforward introduction of the Fourier transform in (2.1)
and (2.3) leads to the following equations:

∂η̂0

∂t
− hk2

0 φ̂0 =

∫
(L0,1,2φ̂1η̂2 + L0,2,1φ̂2η̂1)δ(k1 + k2 − k0) dk12 (2.5)

γ0

∂φ̂0

∂t
+ gη̂0 =

∫
L1,2,0φ̂1φ̂2δ(k1 + k2 − k0) dk12, (2.6)

where L0,1,2 = L(k0, k1, k2) = (k0·k1)/2 and

γ (k) = 1 +
k2h2

3
, (2.7)

with k =
√

k2
x + k2

y
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2.2. Linear equations and wave action variable

We now consider the linearized equations (2.5) and (2.6). It is straightforward to show
that the resulting dispersion relation is given by

ωk = c0

k

(1 + k2h2/3)1/2
, (2.8)

where c0 =
√

gh. It is interesting to note that if one introduces a wave action variable
ak = a(k, t) related to the surface elevation and velocity potential, respectively, as

η̂k =

(
ωk

2g

)1/2

(ak + a∗
−k), (2.9)

φ̂k = −i
1

γk

(
g

2ωk

)1/2

(ak − a∗
−k), (2.10)

the coupled linear equations reduce to a single equation:

∂ak

∂t
+ iωkak = 0 (2.11)

that corresponds to an infinite number of decoupled linear oscillators.

2.3. Nonlinear equations

We now turn our attention to the nonlinear problem and use the relations between
wave action, surface elevation and velocity potential in the nonlinear case. In order
to avoid higher order nonlinear dispersive terms we use ωk =

√
ghk in the right-hand

side of (2.9) and (2.10) to get (
ωk

2g

)1/2

	 1√
2

(
h

g

)1/4

k1/2, (2.12)

1

γk

(
g

2ωk

)1/2

	 1√
2

(
g

h

)1/4
1

k1/2
. (2.13)

Applying the same procedure as for the linear case we obtain the following equation:

∂a0

∂t
+ iω0a0 = −i

∫
V0,1,2[a1a2δ(k0 − k1 − k2) + 2a∗

1a2δ(k0 − k1 + k2)

+ a∗
1a

∗
2δ(k0 + k1 + k2)]dk12, (2.14)

where

V0,1,2 =
1

4
√

2

(
g

h

)1/4
(k1 · k2)k0 + (k0 · k2)k1 + (k0 · k1)k2

(k0k1k2)1/2
. (2.15)

A similar evolution equation has also been found by Zakharov (1999) starting from
the arbitrary depth Euler equations in the limit of shallow water.

3. Four-wave resonant interactions in the Boussinesq equations
3.1. Removing three-wave non-resonant interaction with multiple scale expansion

Apart from the case of generation of long waves which is discussed in the Appendix,
three-wave interactions are never exactly resonant; therefore, it is possible to remove
the quadratic nonlinearity from (2.14). There are different ways to do it. If the system is
Hamiltonian it is natural to use the so-called canonical transformation, i.e. a mapping
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to a different variable which evolves only on the time scale of four-wave interactions
which may be resonant; this methodology is explained in detail in Krasitskii (1994).
The other possibility consists of using the so-called multiple scale expansion; this
method does not require that the system be Hamiltonian, and it has been used in
Zakharov (1968) to derive originally the Zakharov equation. The resulting equations
are not necessarily Hamiltonian. Note, however, that in the multiple scale method
one has also some degrees of freedom which allows one to get the final coupling
coefficients with the desired symmetries. Equation (2.14) is in Hamiltonian form
therefore any method can be used. Here we have used the method of multiple scales
because it can be used also in the cases where the primitive equations do not have
a Hamiltonian structure and therefore can be for example extended to the case of
variable depth. The idea behind the method of the multiple scales is to let variable
ak(t) be a function of slower time scales, i.e. ak(t, τ ) with τ = ε2t and look for an
evolution equation for the slow amplitude variable. We look for a solution of (2.14)
of the form

ak(t, τ ) = bk(t, τ ) + εb
(1)
k (t, τ ) + ε2b

(2)
k (t, τ ) + · · · . (3.1)

Here bk represents the amplitude of the free modes and b
(1)
k and b

(2)
k correspond

to the amplitude of bound modes that can be written as a function of b. Inserting
this solution in (2.14) and recalling that ∂/∂t = ∂/∂t + ε2∂/∂τ , we get the evolution
equation for free waves in the shallow water limit

∂b0

∂t
+ iω0b0 = −i

∫
T0123b

∗
1b2b3δ(k0 + k1 − k2 − k3) dk123, (3.2)

where T1,2,3,4 has the following form:

T1,2,3,4 = −V1,3,1−3V4,2,4−2

[
1

ω3 + ω1−3 − ω1

+
1

ω2 + ω4−2 − ω4

]

− V2,3,2−3V4,1,4−1

[
1

ω3 + ω2−3 − ω2

+
1

ω1 + ω4−1 − ω4

]

− V1,4,1−4V3,2,3−2

[
1

ω4 + ω1−4 − ω1

+
1

ω2 + ω3−2 − ω3

]

− V2,4,2−4V3,1,3−1

[
1

ω4 + ω2−4 − ω2

+
1

ω1 + ω3−1 − ω3

]

− V1+2,1,2V3+4,3,4

[
1

ω1+2 − ω1 − ω2

+
1

ω3+4 − ω3 − ω4

]

− V−1−2,1,2V−3−4,3,4

[
1

ω1+2 + ω1 + ω2

+
1

ω3+4 + ω3 + ω4

]
, (3.3)

where V1,2,3 is given in (2.15) The coupling coefficient is the result of six contributions.
The first four will be called quasi-singular; this is because, as will be shown in the
next section, in the narrow-band approximation the denominator may vanish and
such a limit should therefore be taken with care. The last two terms do not have any
small denominator and will be called regular terms. Equation (3.2) will be named
as the shallow water Zakharov equation; it rules the deterministic evolution of free
modes in flat bottom shallow water. Equation (3.2) will represent the starting point
for developing the kinetic equation.
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4. On certain limits of the shallow water Zakharov equation
Here we will consider the narrow-band approximation of the shallow water

Zakharov equation for one- and two-dimensional propagation. This will help us
in understanding the properties of integrability and the effective nonlinear transfer
in shallow water. It will be shown that in the narrow-band limit there is no energy
transfer because the resulting equations are integrable and the coupling coefficient
in the kinetic equation, T 2

1,2,3,4, turns out to be exactly zero when calculated on the
resonant manifold.

4.1. On the long crested narrow-band approximation:
the nonlinear Schroedinger equation

We now consider the long crested and narrow-band approximation of the Zakharov
equation. In order to write explicitly the equation, the coupling coefficient should be
worked out for the case of a single wave, i.e. T0,0,0,0. A naive attempt to calculate such
a coefficient, taking the narrow-band limit of each of the contributions to T0,0,0,0 fails
because (i) the denominators contain zeros (which should be properly treated) and (ii)
for each of the first four (out of six) contributions the narrow-band limit depends on
the sign of the difference wave vector. This was already noted in Janssen and Onorato
(2007), for example if one attempts to calculate the narrow-band approximation of
the first contribution, it turns out that it depends on the sign of the difference vector
d = k1 − k3= k4 − k2, which is of no help unless one specifies an ordering of the
vectors. Therefore, some caution must be taken to evaluate T0,0,0,0.

In order to properly consider the narrow-band approximation, it is necessary to
combine the first and fourth contributions and the second and third (the fifth and
sixth contributions do not show any apparent singularity and can be calculated
directly). This is due to the fact that, if one considers these contributions together, the
result is independent of the vector d but depends on |d| and the limit of |d| going to
zero can be safely taken. In order to show explicitly the calculation we consider the
following contribution:

C1,2,3,4 = −V1,3,1−3V4,2,4−2

1

ω3 + ω1−3 − ω1

− V2,4,2−4V3,1,3−1

1

ω1 + ω3−1 − ω3

, (4.1)

which, after using the definition of V1,2,3 in (2.15) and considering waves propagating
in one direction with ki = (k0 + εi, 0) with k0 positive and εi a small number which,
in the narrow-band approximation, tends to zero, (4.1) becomes

Cε1,ε2,ε3,ε4
= − 1

16

(
g

h

)1/2

k2
0 |d|5ω1−3 + 4sign[d](ω1 − ω3)

ω2
1−3 − (ω1 − ω3)2

, (4.2)

where we still have explicitly d = k1 − k3. Even though we are in the one-dimensional
case, we still have used the vector notation because the sign of d depends on the
difference ε1 − ε3, whose sign is not a priori known.

The dispersion relation can be used directly to calculate ω1 − ω3 and ω1−3 as a
function of |d|

ω1 − ω3 =
√

gh

[
sign[d]|d|

(
1 − h2k2

0

2

)
− h2

6
(sign[d]|d|)3

]
(4.3)

and

ω1−3 =
√

gh

(
|d| − h2

6
|d|3

)
. (4.4)
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Plugging these relations into (4.2), the sign function disappears from the equation
and upon taking the limit of |d| → 0, we obtain the final result

C0,0,0,0 = − 9 − 2h2k2
0

4h3
(
4 − h2k2

0

) 	 − 9

16h3
, (4.5)

where higher order terms in the dispersive parameter k0h have been neglected. Similar
calculations can be performed to the remaining three quasi-singular terms; so that
the total contribution from such quasi-singular terms is −9/(4h3). Considering the
fifth regular contribution, we obtain

−V1+2,1,2V3+4,3,4

[
1

ω1+2 − ω1 − ω2

+
1

ω3+4 − ω3 − ω4

]
=

9

8h3
. (4.6)

No small denominators appear in the last regular contribution so that a
straightforward calculation leads to

−V−1−2,1,2V−3−4,3,4

[
1

ω1+2 + ω1 + ω2

+
1

ω3+4 + ω3 + ω4

]

= − k2
0

32h
(
1 − (5/12)h2k2

0

) 	 − k2
0

32h
. (4.7)

For very shallow water this last contribution is negligible with respect to the other
contributions; as a result the total contribution from quasi-singular and regular terms
is

T0,0,0,0 = − 9

8h3
. (4.8)

Substituting this in the shallow water Zakharov equation (3.2) and Taylor expanding
ω around wavenumber k0 we get

ωk = ω0 + Cgχ + αχ2 + · · · , (4.9)

with χ = k − k0 and

ω0 =
√

ghk0

(
1 − k2

0h
2/6

)
Cg =

√
gh

(
1 − 1

2
k2

0h
2
)

α = − 1
2

√
ghh2k0. (4.10)

Now, defining

ψk =

(
2c0k0

g

)1/2

bkee
iω0t (4.11)

and writing the resulting Zakharov equation in physical space, we obtain the
(defocusing) nonlinear Schroedinger (NLS) equation in shallow water

∂ψ

∂t
+ Cg

∂ψ

∂x
− iα

∂2ψ

∂x2
− iσ |ψ |2ψ = 0, (4.12)

with

σ = 9
16

c0

h4k0

. (4.13)

This result is identical to the one obtained by taking the shallow water limit of the
arbitrary-depth NLS equation (see Hasimoto and Ono 1972; Mei 2000). The resulting
NLS equation is known to be integrable, therefore it does not admit an irreversible
transfer of energy.
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4.2. The weakly two-dimensional case: the Davey–Stewartson equations

We now let the wavetrain has a weak directional spreading, i.e. we allow for a weak
perturbation in the y-direction with (ky/kx)

2 � 1 which is assumed to be of the
same order as the shallow water parameter (kh)2. The procedure for calculating the
coupling coefficient is similar to the one described in the previous section with the only
complication that wave vectors now are written in the following way ki = (k0 +χi, μi)
with χi and μi small; therefore, the vector d has both x and y components. Carrying
out the calculation for C{k0+χi ,μi} to the leading-order approximation we obtain

C{k0+χi ,μi} =− 1
16

(
g

h

)1/2

k2
0 |dx | 5ω1−3 + 4sign[dx](ω1 − ω3)x(

ω2
1−3 − (ω1 − ω3)2

)
x
+ c0(ω1−3)x((μ1 − μ3)2/|χ1 − χ3|)

=

= − 9k2
0

16h

[
1

(k0h)2 + ((μ1 − μ3)2/(χ1 − χ3)2)

]
, (4.14)

where we have used the relations χ1 + χ2 = χ3 + χ4 and μ1 + μ2 = μ3 + μ4; the
subscript x indicates that these quantities are calculated for the one-dimensional case
as in the previous section. A similar calculation can be performed on the remaining
quasi-singular terms. The first of the regular terms takes the following form:

−V1+2,1,2V3+4,3,4

[
1

ω1+2 − ω1 − ω2

+
1

ω3+4 − ω3 − ω4

]
=

9

8h3
, (4.15)

while the last regular term is of higher order. The final form of the coupling coefficient
becomes

T{k0+χi ,μi} =
9k2

0

8h

[
1

(k0h)2
−

(
1

(k0h)2 + ((μ1 − μ3)2/(χ1 − χ3)2)

)

−
(

1

(k0h)2 + ((μ2 − μ3)2/(χ2 − χ3)2)

)]
(4.16)

The dispersion relation then becomes

ωk = ω0 + Cgχ + αχ2 + βμ2, (4.17)

with

β =
c0

2k0

. (4.18)

The coupling coefficient in (4.16) have an incredibly remarkable property: it turns out
to be exactly zero on the resonant manifold, i.e. in that region of space that satisfies
the following relations:

ω1 + ω2 = ω3 + ω4, χ1 + χ2 = χ3 + χ4, μ1 + μ2 = μ3 + μ4. (4.19)

In order to prove that we eliminate χ2 and μ2 from the above expressions and solve
the resulting quadratic equation for χ1 to obtain

χ1 = 1
2
(χ3 + χ4) ± 1

2

√
4(μ1 − μ3)(μ1 − μ4) + (hk0)2(χ3 − χ4)2

k0h
. (4.20)

Inserting this relation into the coupling coefficient (4.16), after some algebraic
manipulation, it turns out that the coupling coefficient is exactly zero. This result
is related to the fact that the shallow water Zakharov equation obtained in the
weakly two-dimensional case belongs to the family of integrable equations; for this
class of equations it has been shown by Zakharov and Schulman (1988) (see also
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Zakharov 1998) that the coupling coefficient calculated on the resonant manifold is
exactly zero, therefore there is no net transfer of energy. Indeed, it is straightforward to
show that the resulting equation corresponds to the shallow water Davey–Stewartson
equations which are known to be integrable. The arbitrary depth Davey–Stewartson
equations have been derived by Davey and Stewartson in 1974 using the method
of the multiple scale, directly applied to the Euler equations (see also the derivation
from the Zakharov equation in Stiassnie and Shemer 1984). In the shallow water limit
these equations have the following form:

∂ψ

∂t
+ Cg

∂ψ

∂x
− iα

∂2ψ

∂x2
+ iβ

∂2ψ

∂y2
= iμ|ψ |2ψ + iνψ

∂φ

∂x

(k0h)2
∂2φ

∂x2
+

∂2φ

∂y2
= ρ

∂ |ψ |2
∂x

(4.21)

with

ρ = −3c0/(2h2), μ = −9

8

c0

h4k0

, ν = −3

2
k0. (4.22)

Note that in the case where there is no dependence on the y coordinate, the equations
reduce to the defocusing NLS equation described in the previous section in (4.12).
In order to show that the shallow water weakly two-dimensional Zakharov equation
corresponds to the above equation it is sufficient to re-write (4.21) in Fourier space
by simply applying the Fourier Transform definition. The equation for the mean flow
can be solved directly and can be substituted in the equation for the envelope. The
resulting coupling coefficient corresponds exactly to the one in (4.16) provided the
relation (4.11) is used.

5. The statistical description of the shallow water Zakharov equation
Starting from the deterministic Boussinesq equations, in § 2 we have derived an

evolution equation (3.2) on a slower time scale which we have called the Zakharov
equation in shallow water. It is well known that such an equation is the starting point
for the statistical description of water waves. In other words, from (3.2) it is possible
to derive an evolution equation for the wave action spectral density. The procedure
is standard and requires the following approximations:

(i) Homogeneity of the wave field : there exists a portion of the ocean where the
statistical properties of the surface elevation are space independent; this region should
be much larger than the correlation length of the wave field.

(ii) The random phase approximation for free waves: the free waves obeying the
Zakharov equations should be uncorrelated. This hypothesis is the basis of the
closure (just like in turbulence) and allows one to split higher order correlators
(which naturally arise once one is interested in writing an evolution equation for the
spectrum in a nonlinear wave system) as a combination of the product of lower order
correlators.

The resulting evolution equation for the wave action spectral density function
<b0b

∗
1> = N(k0, t) δ (k1 − k0), where brackets denote ensemble averaging, has the

following form:

∂N0

∂t
= 4π

∫
|T0,1,2,3|2N0N1N2N3

(
1

N0

+
1

N1

− 1

N2

− 1

N3

)
δ(k0 + k1 − k2 − k3)δ(ω0 + ω1 − ω2 − ω3)dk123. (5.1)
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This is the four-wave kinetic equation derived from the deterministic Boussinesq
equations, it is relevant to notice that it has the same form as the Hasselmann
equation in deep water except from the fact that the dispersion relation is different
and the coupling coefficient in the multiple integral is also different.

In order to give an estimate of the nonlinear time scale of the four-wave resonant
interactions in shallow water, we consider the fact that at the leading non-trivial order
the coupling coefficient T0,1,2,3 scales as k2/h, therefore we have

τ4NL ∼ ω

N2T 2k4
∼ 1

ω

(
1

a/h

)4

. (5.2)

In very shallow water the time scale can be very fast! Note that in deep water the
nonlinear time scale is of the order of 1/(ωε4), where ε is the wave steepness.

5.1. Comparison with the arbitrary depth Hasselmann equation

In order to verify that the kinetic equation derived from the Boussinesq equations
is consistent with arbitrary depth Hasselmann equation, a direct comparison of the
coupling coefficients is here considered. The coupling coefficient T ad

1,2,3,4 for arbitrary
depth in the Hasselmann equation has the following form (see Janssen and Onorato
2007):

T ad
1,2,3,4 = W1,2,3,4

−V
(−)
1,3,1−3V

(−)
4,2,4−2

[
1

ω3 + ω1−3 − ω1

+
1

ω2 + ω4−2 − ω4

]

−V
(−)
2,3,2−3V

(−)
4,1,4−1

[
1

ω3 + ω2−3 − ω2

+
1

ω1 + ω4−1 − ω4

]

−V
(−)
1,4,1−4V

(−)
3,2,3−2

[
1

ω4 + ω1−4 − ω1

+
1

ω2 + ω3−2 − ω3

]

−V
(−)
2,4,2−4V

(−)
3,1,3−1

[
1

ω4 + ω2−4 − ω2

+
1

ω1 + ω3−1 − ω3

]

−V
(−)
1+2,1,2V

(−)
3+4,3,4

[
1

ω1+2 − ω1 − ω2

+
1

ω3+4 − ω3 − ω4

]

−V
(+)

−1−2,1,2V
(+)

−3−4,3,4

[
1

ω1+2 + ω1 + ω2

+
1

ω3+4 + ω3 + ω4

]
, (5.3)

where the coefficients V
(±)
1,2,3 are

V
(±)
1,2,3 =

1

4
√

2

{
[k1 · k2 ± q1q2]

(
gω3

ω1ω2

)1/2

+ [k1 · k3 ± q1q3]

(
gω2

ω1ω3

)1/2

+ [k2 · k3 + q2q3]

(
gω1

ω2ω3

)1/2
}

, (5.4)

with qi = ω2
i /g. W1,2,3,4 is given by the following analytical expression:

W1,2,3,4 = U−1,−2,3,4 + U3,4,−1,−2 − U3,−2,−1,4 − U−1,3,−2,4 − U−1,4,3,−2 − U4,−2,3,−1 (5.5)

with

U1,2,3,4 = 1
16

(
ω3ω4

ω1ω2

)1/2 [
2
(
k2

1q2 + k2
2q1

)
− q1q2 (q1+3 + q2+3 + q1+4 + q2+4)

]
. (5.6)
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The coupling coefficient in the arbitrary depth Hasselmann equation (see (5.3)) has
a similar form as the coupling coefficient in the kinetic equation derived from the
Boussinesq equations (see (3.3)). In order to understand the relation between the
Hasselmann equation and the Boussinesq kinetic equation we take the shallow water
limit of the coupling coefficients, (T ad)2, in the Hasselmann equation. If one takes the
leading-order term in the dispersion relation, i.e. ω =

√
ghk and substitutes in (5.4)

we obtain

V
(+)
1,2,3 = V

(−)
1,2,3 =

1

4
√

2

{
k1 · k2

(
gk3

c0k1k2

)1/2

+ k1 · k3

(
gk2

c0k1k3

)1/2

+ k2 · k3

(
gk1

c0k2k3

)1/2
}

. (5.7)

One can recognize that V
(+)
1,2,3 and V

(−)
1,2,3 correspond exactly to the V1,2,3 derived

from the Boussinesq equations and given in (2.15). It also should be noted that the
Hasselmann equation contains an extra term, W1,2,3,4, that does not appear in the
Boussinesq kinetic equation; nevertheless it is straightforward to show that, using
ω =

√
ghk in this term, then W1,2,3,4 ∼ hk4 + O(h3k6); therefore, it is of higher order

with respect to the contribution given from V ’s terms. This result highlights the fact
that both in shallow and deep water the four-wave interaction mechanism can take
place and the Hasselmann equation is consistent with the kinetic equation derived
from the Boussinesq equations.

6. Direct energy cascade in the Boussinesq equations
Here we use a straightforward dimensional analysis of the shallow water kinetic

equation in order to investigate on the existence of an inertial range in the wave
spectrum in shallow water. The kinetic Boussinesq equations admit as constants of
motion both the energy and wave action. If these quantities are globally preserved,
it means that across some wavenumber range there must be a flux of energy and
wave action. Here we will only concentrate on the direct energy cascade. In order
to determine an estimate of the slope of the wave spectrum in the inertial range, we
make a dimensional analysis of the kinetic equation

∂Nk

∂t
∼ T 2N3

kk
4ω−1. (6.1)

For the direct energy cascade, the flux of energy �k scales as follows:

�k ∼ ω
∂Nk

∂t
k2 ∼ T 2N3

kk
6. (6.2)

As previously mentioned, to the leading non-trivial order, the coupling coefficient
scales as T ∼ k2/h, and

�k ∼ h−2N3
k k10; (6.3)

therefore, assuming that there is a window of transparency in k space, i.e. a region of
constant flux of energy, the flux must be independent of wavenumbers

Nk ∼ k−10/3 or Ek = ωkNk ∼ k−7/3. (6.4)
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We now move from Cartesian coordinates (kx, ky) to polar coordinates (k, θ) so that
extra k enters due to the Jacobian of the transformation. The final result is

Ek ∼ k−4/3 ∼ ω−4/3. (6.5)

This last result is consistent with the finding of Zakharov (1999). As mentioned in § 1,
this power law has been also observed in experimental data by Smith and Vincent
(2003) and Kaihatu et al. (2007).

7. Dicussion and conclusions
From classical mechanics and dynamical system theory it is well known that

an irreversible energy transfer occurs only when exact resonances take place. In
flat bottom shallow water equations triad interactions are not exactly resonant;
the first non-trivial interaction consists of four interacting waves. Two or more
consecutive quasi-resonant triads interactions can be cast as an exact four-wave
resonant interaction; therefore when researchers run models based on quasi-resonant
triads, they are actually performing higher order nonlinear resonant interactions. As
far as we know, there is not an analytical statistical theory based on the three-wave
quasi-resonant interaction capable of predicting the slope of the wave spectra. The
approach developed here for the Boussinesq equations has allowed us to look at the
three-wave non-resonant interactions as four-wave resonant process. In other words,
an averaging procedure over the three-wave interactions leads to four-wave resonant
interactions.

In this paper, we have discussed a number of issues concerning the propagation of
waves in shallow water. We have shown that the four-wave kinetic equation derived
from the Boussinesq equations is consistent with the arbitrary depth Hasselmann
equation. The time scale of the nonlinear transfer in shallow water can be much
faster than the one in deep water. We stress that we choose, as a starting point,
the original Boussinesq equations in the present study, not because we believe that
these equations represent the best model in shallow water, but because these are the
leading-order equations in shallow water which contains quadratic nonlinearity and
are dispersive. The physics described by these equations is surely included in higher
order models. In the context of the present work it is not a surprise that higher
order Boussinesq models can reproduce the modulational instability mechanism. In
fact, as one includes higher order terms, the self-interaction coupling coefficient of the
four-wave resonant interactions changes sign and the corresponding NLS equation
switches from defocusing to focusing.

Formally speaking, there are some limitations in the use of the four-wave kinetic
equation in shallow water which are related to the convergence of the expansion in
(3.1). This limitations have been discussed in Zakharov (1999). The main problem is
related to the fact that for shallow water and steep waves the second-order term in the
expansion is not much smaller than the first-order term; therefore, the series cannot
be truncated to second or third order. Probably in very shallow water the complete
series should be included in order to reconstruct the cnoidal shape of the waves.
Higher order terms in the expansion would bring higher order resonant wave–wave
interactions. The time scale of nonlinear energy transfer is however dominated by the
lowest order approximation, therefore our estimate of the nonlinear time scale should
still be reasonable. All these results should be tested directly by comparison with
deterministic simulations of the Boussinesq equations or by experiments in wave tank
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facilities. We have also shown in the Appendix that the mechanism of generation of
long waves obeys a three-wave kinetic equation from which a nonlinear time scale can
be estimated. Such an equation could be used in wave forecasting models to predict
the growth of the long-wave components. Clearly, for most applications, the flat
bottom hypothesis is just a very poor approximation; we plan therefore to perform a
similar analysis including also a non-constant bottom in the Boussinesq equation.

We thank V. Zakharov for valuable discussions and inspiring conversations.

Appendix
Long-wave generation: asymptotic three-wave resonant interactions

in the Boussinesq equations

In the case of non-dispersive waves, i.e. ω(k) =
√

ghk, three-wave interactions are
resonant. Nevertheless, a statistical description of acoustic (non-dispersive) waves is
not an easy task because there is not a net separation between the linear and the
nonlinear time scales. Avoiding the dispersiveless case, there are basically two type of
interactions that can take place, given by the following triads:

k0 = k1 + k2 (A1)

k0 = k2 − k1. (A2)

The first one corresponds to the generation of higher harmonics, while the second one,
in the limit of k2 ∼ k1, is responsible for the generation of long-wave components. If
we are looking for an irreversible transfer of energy, the angular frequencies should
satisfy respectively the following relations:

ω(k0) = ω(k1) + ω(k2) (A3)

ω(k0) = ω(k2) − ω(k1) (A4)

It can be shown that none of the above relations is exactly satisfied if dispersive
terms are included. However, there is a difference between the two cases: while in
the generation of harmonics the frequency mismatch is of the order of β (the small
parameter in the Boussinesq approximation), and it is not negligible in dispersive
systems, the generation of the long-wave mechanism results in a frequency mismatch
which is of higher order with respect to the Boussinesq approximation, therefore can
lead to an asympotic resonant interaction. To be more precise, consider two waves
k1 and k2 chosen to be very close to each other and almost parallel, say along the x

direction, a very long wavenumber k0 = �k = kx2 −kx1 is produced. We now calculate
the corresponding frequency mismatch, i.e. ω0 + ω1 − ω2 = −1/2

√
ghh2kx2kx1�k 	

−1/2
√

gh(hkx1)
2�k. In shallow water (hkx1)

2 is a small number which is multiplied
by �k which is also small if kx2 	 kx1. So if �k/kx1 ∼ (kh)2 ∼ a/h, the frequency
mismatch is of higher order with respect to the Boussinesq approximation and can
be neglected within the approximation. The result is that, from a practical point of
view, the generation of long waves in shallow water is an irreversible process.

Statistical description of long waves generation

If we admit that there exists an exact three-wave resonant interaction, then it is
possible to build a three-wave kinetic equation. This can be very helpful because it
allows us to estimate the time scale of generation of the long waves. Following the
standard procedure of wave turbulence theory (Zakharov, L’vov & Falkovich 1992),
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one can look for an evolution equation for the wave action density and using the
random phase approximation and the hypothesis of homogeneity of the wave field,
the following evolution equation can be obtained (see for example Zakharov et al.
1992):

∂N0

∂t
= 2π

∫
|V0,1,2|2(N1N2 − N0N1 − N0N2)δ(k1 − k0 − k2)δ(ω1 − ω0 − ω2) dk12, (A5)

where clearly only the resonant contribution has been considered. A dimensional
analysis of the above equation shows that the nonlinear time scale of generation of
long-wave components is

τ3NL ∼ 1

ω

(
1

(a/h)2(�k/k)

)
∼ 1

ω

(
L/λ

(a/h)2

)
, (A6)

where L is the length of the long wave and λ is the wavelength corresponding to the
dominant frequency.
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